INTEGRAL CALCULUS

Modern Calculus

differentiation

$A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$

$f\left(x_{i}\right)$ is the height of each rectangle

Δx is the width of each rectangle

Adding up an infinite number of rectangles gives us the area under the curve

Integration as an Inverse Process of Differentiation.......

We wrote the answer as x^{2} but why $+C$? $\frac{d}{d x}\left(x^{2}+4\right)=2 x, \frac{d}{d x}\left(x^{2}-6\right)=2 x$ so on...

When we reverse the operation (to find integral), we only know $2 \boldsymbol{x}$, but there could be a constant of any value.....

So we just write $+C$ at the end.

PROPERTIES OF INDEFINITEINTEGRAL

Rules	Function	Integral
Multiplication by constant	$\int c f(x) d x$	$c \int f(x) d x$
Power Rule $(n \neq-1)$	$\int x^{n} d x$	$\frac{x^{n+1}}{n+1}+C$
Sum Rule	$\int(f+g) d x$	$\int f d x+\int g d x$
Difference Rule	$\int(f-g) d x$	$\int f d x-\int g d x$

ANTI-DERIVATIVES

Find the anti derivative (or integral) of the

following functions:

Ex 7.1, 1

Find anti derivative of $\sin 2 x$

We know that

$$
\begin{aligned}
& (\cos 2 x)^{\prime}=\sin 2 x \cdot(-2) \\
& \frac{-1}{2}(\cos 2 x)^{\prime}=\sin 2 x \\
& \sin 2 x=\left(\frac{-1}{2} \cos 2 x\right)^{\prime}
\end{aligned}
$$

\therefore Anti derivate of $\sin 2 x=\frac{-1}{2} \cos 2 x$

Ex 7.1, 4

$$
(a x+b)^{2}
$$

We know that

$$
\begin{aligned}
& \left((a x+b)^{3}\right)^{\prime}=3(a x+b)^{3-1} \cdot \frac{d(a x+b)}{d x} \\
& \left((a x+b)^{3}\right)^{\prime}=3(a x+b)^{2}(a \cdot 1+0) \\
& \left((a x+b)^{3}\right)^{\prime}=3 a(a x+b)^{2} \\
& \frac{1}{3 a}\left((a x+b)^{3}\right)^{\prime}=(a x+b)^{2} \\
& (a x+b)^{2}=\left(\frac{1}{3 a}(a x+b)^{3}\right)^{\prime}
\end{aligned}
$$

\Rightarrow Anti derivate of $(a x+b)^{2}=\frac{1}{3 a}(a x+b)^{3}$

Ex 7.1, 6

$\int\left(4 e^{3 x}+1\right) d x$

Ex 7.1, 10

$$
\begin{aligned}
& \int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x \\
& \int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x
\end{aligned}
$$

$$
=\int\left((\sqrt{x})^{2}+\left(\frac{1}{\sqrt{x}}\right)^{2}-2(\sqrt{x})\left(\frac{1}{\sqrt{x}}\right)\right) d x
$$

$$
=\int\left(x+\frac{1}{x}-2\right) d x
$$

$$
=\int\left(x+\frac{1}{x}-2 x^{0}\right) d x
$$

$$
=\int x d x+\int \frac{1}{x} d x-2 \int x^{0} d x
$$

$$
=\frac{x^{1+1}}{1+1}+\log |x|-\frac{2 x^{0+1}}{0+1}+C
$$

$$
=\frac{x^{2}}{2}+\log |x|-2 x+C
$$

$\int\left(4 e^{3 x}+1\right) d x$

$$
=\int\left(4 e^{3 x}+x^{0}\right) d x
$$

$$
=4 \int e^{3 x} d x+\int x^{0} d x
$$

$$
=\frac{4 e^{3 x}}{3}+\frac{x^{0+1}}{0+1}+C
$$

$$
=\frac{4 e^{3 x}}{3}+x+C
$$

$$
\begin{aligned}
& \text { As } \\
& \int e^{x} d x=e^{x}+C \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C
\end{aligned}
$$

Ex 7.1, 13

$$
\begin{aligned}
& \int \frac{x^{3}-x^{2}+x-1}{x-1} d x \\
& \begin{aligned}
& \int \frac{x^{3}-x^{2}+x-1}{x-1} d x \\
& \quad= \int \frac{x^{2}(x-1)+1(x-1)}{x-1} d x \\
& \quad=\int \frac{\left(x^{2}+1\right)(x-1)}{x-1} d x \\
& \quad=\int\left(x^{2}+1\right) d x \\
& \quad=\int\left(x^{2}+x^{0}\right) d x \\
& \quad=\int x^{2} d x+\int x^{0} d x \\
& \quad=\frac{x^{2}+1}{2+1}+\frac{x^{0+1}}{0+1}+C \\
&= \frac{x^{3}}{3}+\boldsymbol{x}+\boldsymbol{C}
\end{aligned}
\end{aligned}
$$

Ex 7.1, 18

Find anti derivative of $\int \sec x(\sec x+\tan x) \mathrm{d} x$
$\int \sec x(\sec x+\tan x) d x$

$$
\begin{aligned}
& =\int\left(\sec ^{2} x+\sec x \tan x\right) d x \\
& =\int \sec ^{2} x d x+\int(\sec x \tan x) d x \\
& =\tan x+\sec x+C
\end{aligned}
$$

$$
\left(\int x^{n} d x=\frac{x^{n+1}}{n+1}\right)
$$

$$
\begin{aligned}
& \text { As } \\
& \int \sec ^{2} x d x=\tan x+C \\
& \& \int \sec x \tan x d x=\sec x+C
\end{aligned}
$$

Ex 7.1, 22
If $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ such that $f(2)=0$, then $f(x)$ is
(A) $\mathrm{x}^{4}+\frac{1}{x^{3}}-\frac{129}{8}$
(B) $x^{3}+\frac{1}{x^{4}}+\frac{129}{8}$
(C) $x^{4}+\frac{1}{x^{3}}+\frac{129}{8}$
(D) $x^{3}+\frac{1}{x^{4}}-\frac{129}{8}$

Given

$$
\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}
$$

Integrating both sides

$$
\begin{aligned}
& \int \frac{d}{d x} f(x)=\int\left(4 x^{3}-\frac{3}{x^{4}}\right) d x \\
& \int \frac{d}{d x} f(x)=4 \int x^{3} d x-3 \int \frac{1}{x^{4}} d x
\end{aligned}
$$

$$
f(x)=4 \int x^{3} d x-3 \int x^{-4} d x
$$

$$
f(x)=4 \frac{x^{3+1}}{3+1}-3 \frac{x^{-4+1}}{-4+1}+C \quad\left(\text { As } \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right)
$$

$$
f(x)=4 \frac{x^{4}}{4}-3 \frac{x^{-3}}{-3}+C
$$

$$
\begin{equation*}
f(x)=x^{4}+\frac{1}{x^{3}}+C \tag{1}
\end{equation*}
$$

Given $f(2)=0$
Putting $x=2$ in (1)

$$
f(2)=(2)^{4}+\frac{1}{(2)^{3}}+C
$$

$$
0=\frac{129}{8}+C \quad C=\frac{-129}{8}
$$

Putting $C=\frac{-129}{8}$ in (1)

$$
\begin{aligned}
f(x) & =x^{4}+\frac{1}{x^{3}}+C \\
\Rightarrow f(x) & =x^{4}+\frac{1}{x^{3}}-\frac{129}{8}
\end{aligned}
$$

"Two roads diverged in woods and I took the one less travelled by, and that has made all the difference" ROBERT FROST

Suppose that $F(x)$ and $G(x)$ are antiderivatives of $f(x)$ and $g(x)$, respectively, and that c is a constant. Then:
(a) A constant factor can be moved through an integral sign; that is,

$$
\int c f(x) d x=c F(x)+C
$$

(b) An antiderivative of a sum is the sum of the antiderivatives; that is,

$$
\int[f(x)+g(x)] d x=F(x)+G(x)+C
$$

(c) An antiderivative of a difference is the difference of the antiderivatives; that is,

$$
\int[f(x)-g(x)] d x=F(x)-G(x)+C
$$

The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

$$
\frac{d}{d x}[F(x)]=f(x)
$$

then integrating (or antidifferentiating) the function $f(x)$ produces an antiderivative of the form $F(x)+C$. To emphasize this process, Equation (1) is recast using integral notation,

$$
\begin{equation*}
\int f(x) d x=F(x)+C \tag{2}
\end{equation*}
$$

where C is understood to represent an arbitrary constant. It is important to note that (1) and (2) are just different notations to express the same fact. For example,

$$
\int x^{2} d x=\frac{1}{3} x^{3}+C \quad \text { is equivalent to } \quad \frac{d}{d x}\left[\frac{1}{3} x^{3}\right]=x^{2}
$$

Equation (2) should be read as:
The integral of $f(x)$ with respect to x is equal to $F(x)$ plus a constant.
(now this is to be thought of)
(now 4 is not part of the question so how to remove it)

Step 3: Not quite right. Correct power, wrong constant.
Step 4: Try $\mathrm{f}(x)=\frac{1}{4} x^{4} \quad \mathrm{f}^{\prime}(x)=x^{3} \quad$ Correct!
Thus

$$
\int x^{3} \mathrm{~d} x=\frac{1}{4} x^{4}
$$

Evaluate $\int\left(3 x^{2}+4 x+5\right) d x$

Solution

What functions have a derivative of $3 x^{2}$? Some thought will lead us to a cubic, specifically $x^{3}+C_{1}$ where C_{1} is a constant. What functions have a derivative of $4 x$?
Here the x term is raised to the first power, so we likely seek a quadratic. $2 x^{2}+C_{2}$, where C_{2} is a constant.
Finally, what functions have a derivative of 5 ?
Functions of the form $5 x+C_{3}$, where C_{3} is a constant.
Our answer appears to be

$$
\int\left(3 x^{2}+4 x+5\right) d x=x^{3}+C_{1}+2 x^{2}+C_{2}+5 x+C_{3} .
$$

We do not need three separate constants of integration; combine them as one constant, giving the final answer of

$$
\int\left(3 x^{2}+4 x+5\right) d x=x^{3}+2 x^{2}+5 x+C
$$

Example Evaluate $\int t^{4} \sqrt[3]{3-5 t^{5}} d t$.
Consider $\left(3-5 t^{5}\right)^{4 / 3}$ (why only this function)
lets differentiate $\left(3-5 t^{5}\right)^{4 / 3}$

$$
\begin{aligned}
& \frac{d\left(3-5 t^{5}\right)^{4 / 3}}{d x}=\frac{4}{3}\left(3-5 t^{5}\right)^{1 / 3}\left(0-25 t^{4}\right) \\
& =(-25) \frac{4}{3} t^{4}\left(3-5 t^{5}\right)^{1 / 3} \\
& \mathbf{d}\left(3-5 t^{5}\right)^{4 / 3}+\mathbf{0}=-\frac{3}{100} t^{4} \sqrt[3]{3-5 t^{5}} \mathbf{d x} \\
& -\frac{100}{3} \int d\left(3-5 t^{5}\right)^{4 / 3} \mathbf{c}=\int t^{4} \sqrt[3]{3-5 t^{5}} d \mathbf{x} \\
& \int t^{4} \sqrt[3]{3-5 t^{5}} d x=-\frac{100}{3} \int d\left(3-5 t^{5}\right)^{4 / 3}+c \\
& \int t^{4} \sqrt[3]{3-5 t^{5}} d \mathbf{d x}=-\frac{100}{3}\left(3-5 t^{5}\right)^{4 / 3}+c
\end{aligned}
$$

Evaluate $\int x \cos x d x$.
Now differentiation of $\sin x$ is $\cos x$. Since x is multiplied with $\cos x$, let us differentiate ($x \sin x$)

$$
\begin{aligned}
& d(x \sin x)=x d(\sin x)+\sin x d(x) \\
& d(x \sin x)=x \cos x+\sin x \cdot 1 \\
& x \cos x=d(x \sin x)-\sin x
\end{aligned}
$$

When you integrate both sides wrt ' x ' we get

$$
\int x \cos x d x=x \sin x+\cos x+C
$$

1. (a) $\int(5-2 x)^{8} d x$	(b) $\int \frac{\sin x}{\sqrt{2+\cos x}} d x$	(c) $\int \tan ^{2} x \sec ^{2} x d x$
2. (a) $\int \frac{\sqrt{\tan ^{-1} x}}{1+x^{2}} d x$	(b) $\int \frac{\ln x}{x} d x$	

Intuition is more powerful than intellect

OPENING THE OOORS OF DFFERENTIAL S INTEGRAL CALCULLLS
integrals
Module - 3

Here's What Integration is!

$$
\begin{aligned}
& \text { If } \frac{d}{d x}(F(x))=f(x) \text {, then } \\
& \int f(x) d x=F(x)+c
\end{aligned}
$$

The function $F(x)$ is called anti-derivative or integral or primitive of the given function $f(x)$ and c is known as the constant of integration or the arbitrary constant.

The function $f(x)$ is called the integrand and $f(x) d x$ is known as the element of integration.

Points to Remember:

Since the integral of a function isn't definite, therefore it is generally referred to as indefinite integral.

We can never find the integral of a function at a point; we always find the integral of a given function in an interval.

Integral of a function is not unique; integrals of a function differ by numbers.

BASIC INTEGRATION FORMULAE

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$. Particularly, $\int d x=x+c$
2. $\int \cos x d x=\sin x+C$
3. $\int \sin x d x=-\cos x+C$
4. $\int \sec ^{2} x d x=\tan x+c$
5. $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
6. $\int \sec x \tan x d x=\sec x+c$
7. $\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c$
8. $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} \mathrm{x}+\mathrm{c}$
9. $\int \frac{d x}{\sqrt{1-x^{2}}}=-\cos ^{-1} x+c$
10. $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c$
11. $\int \frac{d x}{1+x^{2}}=-\cot ^{-1} \mathrm{x}+\mathrm{c}$
12. $\int e^{x} d x=e^{x}+c$
13. $\int a^{x} d x=\frac{a^{x}}{\log a}+c$
14. $\int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+c$
15. $\int \frac{d x}{x \sqrt{x^{2}-1}}=-\operatorname{cosec}^{-1} x+c$
16. $\int \frac{1}{x} d x=\log |x|+c$
17. $\int \tan x d x=\log |\sec x|+c$
18. $\int \cot x d x=\log |\sin x|+c$
19. $\int \sec x d x=\log |\sec x+\tan x|+c$
20. $\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+c$

NOTE :

$\int f(x) d x=F(x)+c$

$$
\int f(a x+b) d x=\frac{F(a x+b)}{a}+c
$$

1. $\int(a x+b)^{n} d x=\frac{1}{a} \cdot \frac{(a x+b)^{n+1}}{n+1}+C, n \neq-1$
2. $\int \frac{1}{a x+b} d x=\frac{1}{a} \log |a x+b|+C$
3. $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+C$
4. $\int a^{b x+c} d x=\frac{1}{b} \cdot \frac{a^{b x+c}}{\log a}+C, a>0$ and $a \neq 1$
5. $\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+C$

Now....try this.... Integrate $\sin \boldsymbol{m x}$ with respect to x.

1) $\int \sec (5-8 x) \tan (5-8 x) d x=\frac{\sec (5-8 x)}{-8}+c$
2) $\int \operatorname{cosec}^{2}(7-8 x) d x=\frac{\cot (7-8 x)}{8}+c$
3) $\int \frac{1}{(2 x-6)^{\frac{3}{7}}} d x=\frac{(2 x-6)^{\frac{4}{7}}}{2 \cdot\left(\frac{4}{7}\right)}+c=\frac{7}{8}(2 x-6)^{\frac{4}{7}}+c$
4) $\int \frac{1}{2 x+5} d x=\frac{1}{2} \log |2 x+5|+c$
5) $\int \frac{e^{(9 x+2)}}{e^{(3 x-2)}} d x=\int e^{6 x+4} d x=\frac{e^{6 x+4}}{6}+c$
6) $\int \frac{5^{7 x-5)}}{5^{(2 x+10)}} d x=\int 5^{5 x-15)} \mathrm{dx}=\frac{5^{5 x-15)}}{5 \cdot \log 5}+\mathrm{c}$

Here's a list of Integration Methods -

1.Integration by Substitution
2. Integration Using Trigonometric Identities
3.Integration of Some particular fraction
4.Integration by Partial Fraction
5.Integration by Parts

The Substitution Method

According to the substitution method, a given integral $\int f(x) d x$ can be transformed into another form by changing the indlependent variable x to t. This is done by substituting $x=g(t)$.

Consider, $I=\int f(x) d x$
Now, substitute $x=g(t)$ so that, $d x / d t=g^{\prime}(t)$ or $d x=g^{\prime}(t) d t$.
Therefore, $I=\int f(x) d x=\int f[g(t)] g^{\prime}(t) d t$

It is important to note here that you should make the substitution for a function
whose derivative also occurs in the integrand as shown in the following examples.
Example 1
Integrate $2 x \sin \left(x^{2}+1\right)$ with respect to x.
Solution: We know that the derivative of $\left(x^{2}+1\right)=2 x$. Hence, let's substitute $\left(x^{2}+1\right)$ $=t$, so that $2 x=\frac{d t}{d x}$. Therefore, $2 x d x=d t$

Now,
$\int 2 \mathrm{x} \sin \left(\mathrm{x}^{2}+1\right) \mathrm{dx}=\int \sin \mathrm{t} d t$

$$
=-\cos t+C=-\cos \left(x^{2}+1\right)+C
$$

INTEGRATION BY SUBSTITUTION

Ex 7.2, 1

Integrate the function: $\frac{2 x}{1+x^{2}}$

Let $1+x^{2}=t$
Differentiate w.r.t. x

$$
\begin{aligned}
& 2 x=\frac{d t}{d x} \\
& d x=\frac{d t}{2 x}
\end{aligned}
$$

Thus, our equation becomes

$$
\begin{aligned}
\int \frac{2 x}{1+x^{2}} d x & =\int \frac{2 x}{t} \cdot \frac{d t}{2 x} \\
& =\int \frac{d t}{t} \\
& =\log |t|+C
\end{aligned}
$$

$$
\left(\int \frac{1}{x} d x=\log |x|+C\right)
$$

Puttingt $=1+x^{2}$

$$
\begin{aligned}
& =\log \left|1+x^{2}\right|+C \\
& =\log \left(1+x^{2}\right)+C \quad \text { (Since } 1+x^{2} \text { is always positive) }
\end{aligned}
$$

Ex 7.2, 3

Integrate the function: $\frac{1}{x+x \log x}$

$$
\frac{1}{x+x \log x}=\frac{1}{x(1+\log x)}
$$

Step 1:

Let $1+\log x=t$
Differentiating both sides w.r.t. x
$0+\frac{1}{x}=\frac{d t}{d x}$

$$
\frac{1}{x}=\frac{d t}{d x}
$$

$$
d x=x d t
$$

Step 2:
Integrating function

$$
\begin{aligned}
& \int \frac{1}{x+x \log x} \cdot d x \\
& \quad=\int \frac{1}{x(1+\log x)} \cdot d x
\end{aligned}
$$

Putting $1+\log x \& d x=x d t$

$$
=\int \frac{1}{x(t)} d t \cdot x
$$

$$
=\int \frac{1}{t} d t
$$

$$
\left(U \operatorname{sing} \int \frac{1}{x} d x=\log |x|+C\right)
$$

$$
=\log |t|+C
$$

Putting back $t=1+\log x$

$$
=\log |1+\log x|+C
$$

Ex 7.2, 7

Integrate the function: $x \sqrt{x+2}$
Let $(x+2)=t$
Differentiating both sides w.r.t.x

$$
\begin{aligned}
1+0 & =\frac{d t}{d x} \\
1 & =\frac{d t}{d x} \\
d x & =d t
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \int x \sqrt{x+2} \cdot d x \\
= & \int(t-2) \sqrt{t} \cdot d t \quad(U \operatorname{sing} x+2=t, x=t-2) \\
= & \int(t-2) t^{\frac{1}{2}} \cdot d t \\
= & \int\left(t \cdot t^{\frac{1}{2}}-2 \cdot t^{\frac{1}{2}}\right) \cdot d t \\
= & \int\left(t^{\frac{3}{2}}-2 \cdot t^{\frac{1}{2}}\right) \cdot d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{t^{\frac{3}{2}}+1}{\frac{3}{2}+1}-2 \cdot \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C \quad\left(U \operatorname{sing} \int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}\right) \\
& =\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2 \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+C \\
& =\frac{2}{5} t^{\frac{5}{2}}-2 \times \frac{2}{3} t^{\frac{3}{2}}+C
\end{aligned}
$$

$$
=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+C
$$

Putting back $t=x+2$

$$
=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C
$$

Ex 7.2, 19
Integrate the function $\frac{e^{2 x}-1}{e^{2 x}+1}$
Dividing numerator and denominator by e^{x}, we obtain

$$
\begin{aligned}
& =\frac{\frac{e^{2 x}}{e^{x}}-\frac{1}{e^{x}}}{\frac{e^{2 x}}{e^{x}}+\frac{1}{e^{x}}} \\
& =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
\end{aligned}
$$

Let $e^{x}+e^{-x}=t$
Differentiating both sides w.r.t. x

$$
\begin{gathered}
e^{x}+(-1) e^{-x}=\frac{d t}{d x} \\
e^{x}-e^{-x}=\frac{d t}{d x} \\
d x=\frac{d t}{e^{x}-e^{-x}}
\end{gathered}
$$

Now,

$$
\begin{aligned}
& \int \frac{e^{2 x}-1}{e^{2 x}+1} \cdot d x \\
= & \int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \cdot d x
\end{aligned}
$$

Putting $e^{x}+e^{-x}=t \& d x=\frac{d t}{e^{x}-e^{-x}}$

$$
=\int \frac{e^{x}-e^{-x}}{t} \cdot \frac{d t}{e^{x}-e^{-x}}
$$

$$
=\int \frac{1}{t} \cdot d t
$$

$$
=\log |t|+C
$$

$$
=\log \left|e^{x}+e^{-x}\right|+C \quad\left(\text { Using } t=e^{x}+e^{-x}\right)
$$

$$
=\log \left(e^{x}+e^{-x}\right)+C \quad\left(\text { As } e^{x}+e^{-x}>0\right)
$$

Ex 7.2, 32

Integrate $\frac{1}{1+\cot x}$

Simplify the given function
$\int \frac{1}{1+\cot x} d x$
$=\int \frac{1}{1+\frac{\cos x}{\sin x}} d x$
$=\int \frac{1}{\frac{\sin x+\cos x}{\sin x}} d x$
$=\int \frac{\sin x}{\sin x+\cos x} d x$
Multiplying \& dividing by 2

$$
=\int \frac{2 \sin x}{2(\sin x+\cos x)} d x
$$

Adding \& subtracting $\cos x$ in numerator

$$
\begin{aligned}
& =\int \frac{\sin x+\sin x+\cos x-\cos x}{2(\sin x+\cos x)} d x \\
& =\frac{1}{2} \int\left(\frac{\sin x+\cos x+\sin x-\cos x}{\sin x+\cos x}\right) d x \\
& =\frac{1}{2} \int\left(\frac{\sin x+\cos x}{\sin x+\cos x}+\frac{\sin x-\cos x}{\sin x+\cos x}\right) d x \\
& =\frac{1}{2} \int\left(1+\frac{\sin x-\cos x}{\sin x+\cos x}\right) d x \\
& =\frac{1}{2}\left[x+\int\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right) d x\right]+C_{1} \\
& \frac{1}{\mathbf{I}_{1}}
\end{aligned}
$$

Solving I_{1}

$\mathrm{I}_{1}=\int \frac{\sin x-\cos x}{\sin x+\cos x} d x$

Let $\sin x+\cos x=t$
Differentiating both sides w.r.t. x

$$
\begin{aligned}
& \cos x-\sin x=\frac{d t}{d x} \\
& d x=\frac{d t}{\cos x-\sin x} \\
& d x=\frac{d t}{-(\sin x-\cos x)}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{I}_{1}=\int \frac{\sin x-\cos x}{\sin x+\cos x} & d x=\int \frac{\sin x-\cos x}{t} \cdot \frac{d t}{-(\sin x-\cos x)} \\
& =-1 \int \frac{d t}{t} \\
& =-\log |t|+C
\end{aligned}
$$

Putting back $t=\sin x+\cos x$

$$
=-\log |\sin x+\cos x|+C_{2}
$$

Putting the value of I_{1} in (1)

$$
\begin{aligned}
\therefore \int \frac{1}{1+\cot x} & =\frac{1}{2}\left[x+\int\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right) d x\right]+C_{1} \\
& =\frac{1}{2}\left[x-\log |\sin x+\cos x|+C_{2}\right]+C_{1} \\
& =\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+C_{1}+\frac{C_{2}}{2} \\
& =\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+C
\end{aligned}
$$

Ex 7.2, 34

Integrate $\frac{\sqrt{\tan x}}{\sin x \cos x}$

Simplifying the function

$$
\begin{aligned}
& =\frac{\sqrt{\tan x}}{\sin x \cos x \cdot \frac{\cos x}{\cos x}} \\
& =\frac{\sqrt{\tan x}}{\sin x \cdot \frac{\cos ^{2} x}{\cos x}} \\
& =\frac{\sqrt{\tan x}}{\cos ^{2} x \cdot \tan x} \\
& =(\tan x)^{\frac{-1}{2}} \times \sec ^{2} x
\end{aligned}
$$

Concept:

There are two methods to deal with
$\tan x$
(1) Convert into $\sin x$ and $\cos x$, then solve using the properties of $\sin x$ and $\cos x$.
(2) Change into $\sec ^{2} x$, as derivative of $\tan x$ is $\sec ^{2}$.

Here, $1^{\text {st }}$ Method is not applicable, so we have used $2^{\text {nd }}$ Method .

Integrating the function

$$
\begin{aligned}
& \int \frac{\sqrt{\tan x}}{\sin x \cos x} \cdot d x=\int(\tan x)^{\frac{-1}{2}} \times \sec ^{2} x \cdot d x \\
& \text { Let } \tan x=t
\end{aligned}
$$

Differentiating both sides w.r.t. x $\sec ^{2} x=\frac{d t}{d x}$

$$
d x=\frac{d t}{\sec ^{2} x}
$$

$=\int(t)^{\frac{-1}{2}} \cdot \sec ^{2} x \cdot \frac{d t}{\sec ^{2} x}$
$=\int t^{\frac{-1}{2}} \cdot d t$
$=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+C=2 t^{\frac{1}{2}}+C$
$=2 \sqrt{\tan x}+C$
$(U \operatorname{sing} t=\tan x)$
$\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals

$$
=\int \sec ^{2} x \cdot d x+\int \operatorname{cosec}^{2} x \cdot d x
$$

$$
=\tan x-\cot x+C
$$

(A) $\tan x+\cot x+C$
(B) $\tan x-\cot x+C$
(C) $\tan x \cot x+C$
(D) $\tan x-\cot 2 x+C$
\therefore Option B is correct.

$$
\begin{aligned}
& \text { Using } \int \sec ^{2} x \cdot d x=\tan x \\
& \text { and } \int \operatorname{cosec}^{2} x \cdot d x=-\cot x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{1}{\sin ^{2} x \cos ^{2} x} \cdot d x \\
& =\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \cdot d x \quad\left(U \operatorname{sing} \sin ^{2} x+\cos ^{2} x=1\right)
\end{aligned}
$$

HOME ASSIGNMENT

$$
=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} \cdot d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \cdot d x
$$

EXERCISE-7.2
 Q.NO-
 8,10,20,23,27,33,35,36

$$
=\int \frac{1}{\cos ^{2} x} \cdot d x+\int \frac{1}{\sin ^{2} x} \cdot d x
$$

